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Abstract

Exhaustive exercise in a hot environment can impair performance. Higher epinephrine

plasma levels occur during exercise in heat, indicating greater sympathetic activity. This

study examined the influence of exercise in the heat on stress levels. Nine young healthy

men performed a maximal progressive test on a cycle ergometer at two different environ-

mental conditions: hot (40˚C) and normal (22˚C), both between 40% and 50% relative

humidity. Venous blood and saliva samples were collected pre-test and post-test. Before

exercise there were no significant changes in salivary biomarkers (salivary IgA: p = 0.12; α-

amylase: p = 0.66; cortisol: p = 0.95; nitric oxide: p = 0.13; total proteins: p = 0.07) or blood

lactate (p = 0.14) between the two thermal environments. Following exercise, there were

significant increases in all variables (salivary IgA 22˚C: p = 0.04, 40˚C: p = 0.0002; α-amy-

lase 22˚C: p = 0.0002, 40˚C: p = 0.0002; cortisol 22˚C: p = 0.02, 40˚C: p = 0.0002; nitric

oxide 22˚C: p = 0.0005, 40˚C: p = 0.0003, total proteins 22˚C: p<0.0001, 40˚C: p<0.0001

and; blood lactate 22˚C: p<0.0001, 40˚C: p<0.0001) both at 22˚C and 40˚C. There was no

significant adjustment regarding IgA levels between the two thermal environments (p =

0.74), however the levels of α-amylase (p = 0.02), cortisol (p<0.0001), nitric oxide (p = 0.02)

and total proteins (p = 0.01) in saliva were higher in the hotter conditions. Blood lactate was

lower under the hot environment (p = 0.01). In conclusion, enduring hot temperature intensi-

fied stressful responses elicited by exercise. This study advocates that hot temperature

deteriorates exercise performance under exhaustive stress and effort conditions.

Introduction

Physical activity induces physiological adjustment to support bodily changes during exercise.

This adjustment varies with the duration [1], types and intensity of exercise [2], training level
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[3] and environmental conditions [4]. The analysis of salivary components such as total pro-

tein, α-amylase, immunoglobulin A (IgA), nitric oxide (NO) and cortisol may signify a non-

invasive technique to determine the relationship of the intensity, duration, temperature, rela-

tive humidity and type of exercise with the changes that these situations could cause on the

immune system and on the physical stress of the athlete [4–6].

Several studies have investigated the effects of exercise in different situations on the immu-

nological system by salivary IgA and have reported decreased [7], increased [8] or unchanged

[9] IgA levels post exercise. A scientific investigation demonstrated that a 100-km ultra-mara-

thon induced negative immunological changes [10]. As a consequence, the authors recom-

mended that exhaustive physical exercise would cause increased vulnerability to infections

[10].

In this way, the stress response induced by exercise can be evaluated through the activity of

salivary α-amylase [6, 11, 12], which is regulated by the adrenal sympathetic system, by means

of the action of norepinephrine on the salivary glands. The physical and psychological strain

generated by exercise stimulates the release of a glucocorticoid hormone cortisol by the adre-

nal gland [13,14], promoting mood deviations and decreased athletic performance [1,14]. This

is because the increase in cortisol is bound to decreased action of serotonin in the brain, by

lessening of mRNA coding for the synthesis of this neurotransmitter receptor [15]. The above-

mentioned studies support the analysis of levels of α-amylase and cortisol in saliva as reliable

parameters to estimate the stress induced by exercise [1,6].

The stress response is connected with exercise intensity, which can be analyzed through lac-

tate. Blood lactate levels are useful to determine the critical intensity of physical exercise toler-

ance or alternatively to assess the level of athletic training [16]. The increase in salivary levels

of total protein during exercise is attributable to activation of the sympathetic nervous system

[17,18] and thus expresses the level of exercise-induced stress.

Prolonged exercise commenced in a hot environment can impair the subject’s performance

[19], as higher plasma concentrations of epinephrine during exercise elicited by heat induces

higher sympathetic activity [20]. It has already been demonstrated that moderate-intensity

exercise in a hot environment induced inflammatory processes [21] and that blood lactate

responses to submaximal and maximal exercises are decreased under cool (10˚C) or hot

(35˚C) conditions in soccer players [22]. Accordingly, it was recommended that athletes train

in the morning during hot conditions, indicating the impact of hot temperature on immuno-

logical variables [23].

Declined salivary IgA accompanied by increased salivary α-amylase was reported in athletic

runners during completion of an ultramarathon performed in hot conditions [24]. Recently, a

study suggested that heat stress acts as a single stressor distinct from exercise [25].

In this manner, the research literature suggests that exercise in hot environments results in

increased physiological stress [4,6,23–25]. Nonetheless, it was unclear whether there was an

effect of hot temperature on salivary proteins, NO, IgA and α-amylase responses induced by

exhaustive exercise. Here, this study aimed to compare stressful responses to exercise between

a hot environment (40˚C) compared to normal conditions (22˚C) and between 40% and 50%

relative humidity under both situations, by analysis of salivary biomarkers and blood lactate.

Methods

This investigation was approved by the Ethics Committee in Research of the Federal Univer-

sity of de Minas Gerais (COEP 355/05/Brazil). This study was performed in accordance with

the National Research Act of 1974 (P.L. 93–34). The research was directed in the Exercise

Physiology Laboratory, located at Center of Excellence in Sports Science, School of Physical
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Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais. The

participants signed terms of informed consent. We examined nine healthy competent non-

athletes and physically active men (24.2 ± 2.5 years old, 48.07 ± 4.63 mL�kg-1
�min-1) enrolled in

the Physical Education course at the Federal University of Minas Gerais. The profile of the

sample population was based on regular physical activity and their physiological status (fat per-

centage, oxygen consumption-VO2max-, mass, height and body mass index-BMI). VO2max was

recorded during a maximal effort test with a bicycle ergometer three to five days prior to the

experiment. Expired gases were analyzed to obtain the VO2max recognized as the highest oxy-

gen consumption attained during the protocol. Fat percentage was recorded via tetrapolar

bioimpedance analysis. An inclusion criterion of VO2 max between 40 and 60 mL�kg-1�min-1

was adopted.

Procedures

Each subject accomplished two sessions of progressive maximal exercise on a bicycle ergome-

ter, one in a hot environment (40˚C) and another in a normal environment (22˚C), both at

between 40% and 50% relative humidity. The tests were completed at intervals of between

three and five days to minimize any type of adaptation (training effects) during the test, and at

the same time of day (from 15:00 to 16:00) to standardize influences of the circadian rhythm

[23]. This period of interruption permits all biochemical variables analyzed to re-establish dur-

ing the second protocol. Identical clothing was worn throughout all test conditions. The par-

ticipants were instructed not to drink alcohol or beverages containing caffeine and, not to

perform vigorous physical activity 24 hours prior to the test. Participants were not allowed to

ingest any water during the trials.

Throughout the test period, volunteers were requested to ingest at least 500 ml of water two

hours prior to the tests to ensure hydration status according to Armstrong [26]: specific gravity

of less than or equal to 1.030. The urinary density was recorded before the start of the exercises

to ensure that the volunteers were properly hydrated and afterwards, through a refractometer

(JSCP—Uridens, São Paulo, SP, Brazil), previously calibrated with distilled water. The subjects

were asked to maintain their usual diet and report their meals the night before and at breakfast

the day of the test.

Progressive exercise protocol

The tests commenced with a power equivalent to 60W and were increased by 15W every three

minutes of exercise until fatigue. The rhythm was kept at 60 rpm. The peak power (WPeak22

and WPeak40) was computed according to the equation WPeak = W1 + (W2�t/180) [27],

where W1 is the power corresponding the last complete stage, W2 is the power corresponding

to the load increment of each stage and t is time in seconds for the duration of the incomplete

stage. These ergo-spirometric variables were recorded simultaneously throughout the test.

Saliva samples and, 25 μl of blood was taken from the earlobe prior to the start of exercise

(pre-test) and at one (post-test 1) and five (post-test 5) minutes after exercise, for blood lactate

inspection.

During the exercises, rectal temperature (Tr) was monitored continuously and logged every

minute, and was considered as a gauge of the internal temperature (Ti). Measurements were

completed with a disposable rectal probe (Yellow Springs, OH, 4491-E, USA), which was

implanted approximately 11 cm beyond the anal sphincter and connected wirelessly (Yellow

Springs, OH, USA).

The situations regarding test termination were: 1) request for cessation of exercise by the

participant, 2) failure to maintain the pre-determined rhythm, 3) rectal temperature during
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exercise equal to or greater than 39.5˚C, 4) occurrence of dizziness, confusion, pallor, cyanosis,

nausea and/or signs of peripheral circulatory failure, and finally 5) acknowledgement of any

complications with the equipment.

The participants were weighed undressed before and after completion of exercise, and total

sweat rate was calculated as the difference in body mass, relativized by body surface area and

divided by the time of exercise.

The urine specific gravity was measured before exercise, then, one minute and five minutes

immediately post-test with the use of a refractometer (JSCP, Uridens, São Paulo, SP, Brazil)

previously calibrated with distilled water. The participants were advised to maintain their

usual diets and record the content of the meals taken the night before and for breakfast on the

day of test.

Salivary analysis

Before saliva collection, the participants completed an oral antisepsis for the cleaning of cellu-

lar debris and other impurities. Salivation was stimulated by chewing one tablet of parafilm

(Parafilm) with a mass of 0.5 grams. Chewing the tablet was coached in a recognized manner,

without concern regarding speed, strength or frequency of chewing. The saliva collection was

started immediately after the tests and the collection time was that attained in 1 minute. Saliva

samples were placed in pre-cooled (4˚C) mini-tubes and stored at -20˚C for the analysis of α-

amylase, total proteins, NO, IgA, and cortisol. All analyses were undertaken in duplicate. Anal-

ysis of the α-amylase activity was achieved by a kinetic method at 405 nm using the substrate

2-chloro-p-nitrophenyl-D-α-maltotrioside (CNP-G3) according to manufacturer’s protocol

(Amilasa 405, Wiener Lab, Argentina).

The total protein determination was decided using the biuret colorimetric method (UCFS

DIASYS, Germany), with absorbance readings at 604 nm and 700 nm (Autoanalyser Architeet

c8000, Abbot, IL, USA). The amount of salivary NO was measured by a colorimetric technique

(Granger, Taintor, Boockvar, Hibbs, 1996) with an absorbance reading at 570 nm in a micro-

plate reader (Titertek Multiskan Plus MK11). Datasets were analyzed using Microplate Man-

ager application v4.0 (Bio-Rad Laboratories, USA). Analysis of total IgA was undertaken by an

adaptation of the ELISA test (Mackinnon Hooper, 1994). Microtiter plates (Maxi-Sorp, Nunc,

Wohlen) were sensitized with anti-human IgA (Sigma Chemical, Buchs) diluted in 0.06 M car-

bonate buffer pH 9.6 for 12 hours at 4˚C. The plates were washed and blocked with orthophe-

nylenediamine dihydrochloride (OPD). Saliva samples were diluted at a ratio 1:2 in 1%

BSA-PBS buffer and incubated for 1 hour at room temperature. After washing, a biotinylated

anti-IgA conjugate labeled with peroxidase was added to the solution. After exercise addition

of peroxidase substrate (H2O2), diluted in the chromogen buffer (OPD), the solution was incu-

bated at room temperature for 1 hour. For individual analysis of the plates, the results were

stated as ELISA indexes (IE). The optical density (OD) values at 405 nm were reached in a

microplate reader. After exercise obtaining the IgA concentrations, they were divided by the

concentration of total proteins in the saliva to acquire the values of specific IgA. Measurement

of cortisol was completed using a commercially available kit (Salimetrics, USA) and determi-

nation of optical density at 450 nm using an ELISA reader.

Salivary flow was collected before exercise, then, one minute and five minutes immediately

post-test determined by dividing the volume by the saliva collection time.

Blood tests

After local asepsis (absence of the microorganisms causing sepsis), samples of arterial blood

(25 μl) were collected from the earlobe before exercise, then, one minute and five minutes
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immediately post-test, using glass capillaries containing heparin. Blood samples were trans-

ferred to mini tubes containing 50 μl of 1% sodium fluoride and stored at -20˚C for analysis of

lactate. The Lactate measurements were completed in duplicate by an electro-enzymatic

method in an automated analyzer (YSI 2300 Sport L-lactate analyzer, USI Inc, Yellow Spring,

Ohio, USA) [28].

Statistical analysis

A normal distribution across the obtained results was assessed by the Shapiro-Wilk test. All

datasets were expressed as mean ± standard deviation.

Comparisons of the variables between thermal environments (22˚C vs. 40˚C) and moments

in time (pre-test vs. post-test 1 vs. post-test 5) were attained through the analysis of variance

technique to model repeated measures on two factors scheme. Data from repeated measure-

ments were checked for sphericity using the Mauchly test. Greenhouse-Geisser correction was

applied when the sphericity was violated.

To consider the two phases (rest vs. recovery periods); the two-way ANOVA followed by

the Bonferroni post-test for parametric distribution or, Friedman followed by the Dunn’s

post-test for non-parametric distribution were applied. Differences were considered signifi-

cant when the probability of a Type I error was less than 5% (or, p<0.05).

To measure the extent of modification between phases for significant differences, the effect

size was calculated using Cohen’s d. Large effect size was considered for values� 0.9, medium

for values between 0.9 and 0.5 and small for values between 0.5 and 0.25 [29].

GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA) was used for statistical

analysis.

Results

Anthropometric variables and exercise time duration

Table 1 presents data concerning age, mass, height, BMI, fat percentage and VO2max of the

volunteers.

Time range of exercise was higher (p = 0.026, Cohen’s d = 1.15) at 22˚C (33 ± 5.4 min) com-

pared to 44˚C (27 ± 4.97 min).

Resting physiological values

There were no changes between 22˚C and 40˚C, at rest for IgA (p = 0.15), salivary α-amylase

(p = 0.4) (Fig 1), cortisol (p = 0.17) (Fig 2), NO (p = 0.07) (Fig 3), total proteins (p = 0.08) (Fig

4), or blood lactate (p = 0.16) (Fig 5).

Furthermore, we analyzed inter-individual difference of all variables. IgA ranged between

3.9 and 6.1 μg/dL, α-amylase between 1233 and 1583 U/mL, cortisol between 0.9 and 1.13 μg/

Table 1. Mean values followed by their respective standard deviations of age, mass, height, BMI, fat percentage

and VO2max.

Variables

Mass (Kg) 74.99 ± 7.40

Height (m) 1.787 ± 0.4

BMI (Kg/m2) 23.66 ± 1.1

Fat percentage (%) 13.6 ± 5.8

BMI: body mass index; kg: kilogram; m: meters.

https://doi.org/10.1371/journal.pone.0209510.t001
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dL, NO between 81 and 151.03 μM, total proteins between 0.708 and 0.987 mg/mL and finally

lactate between 0.99 and 1.44 mM.

Physiological responses induced by exercise

Post-test heart rate was increased at 40˚C vs. post-test in 22˚C (Cohen’s d = 13.03) and rest in

40˚C (Cohen’s d = 10.9) (Table 2).

IgA concentrations increased with exercise at both temperatures. It was observed that α-

amylase increased with exercise at both temperatures (Fig 1). Salivary cortisol increased post-

test at both temperatures (Fig 2). NO levels increased post exercise (Fig 3). Total proteins con-

centration in saliva increased post exercise at both temperatures (Fig 4). Blood lactate levels

increased post exercise (Fig 5) (Table 3).

Influence of temperature on physiological variables

IgA was unchanged between the 40˚C and 22˚C protocols (p>0.05). In contrast, it was

observed that α-amylase was greater one minute (p<0.05; Cohen’s d = 7.32) and five minutes

(p<0.05; Cohen’s d = 2.63) immediately post-test; salivary α-amylase was greater at 40˚C com-

pared to 22˚C (Fig 1). Cortisol was significantly greater at 40˚C compared to 22˚C one-minute

(p<0.05; Cohen’s d = 2.8) and five minutes (p<0.05; Cohen’s d = 3.95) post-test (Fig 2). NO

levels were significantly higher at 40˚C, one-minute (p<0.05; Cohen’s d = 0.13) and five min-

utes (p<0.05; Cohen’s d = 0.17) post-test compared to 22˚C (Fig 3). Total protein was

Fig 1. Activities of salivary α-amylase pre-test and at one (Post-test1) and five minutes (Post-test5) after physical exhaustion at temperatures of 22 and 40˚C. †

p< 0.05 different from Pre-test/22; ‡ p< 0.05 different from Pre-test/40; � p< 0.05 different from Post-test1/22; �� p< 0.05 different from Post-test1/40; ��� p< 0.05

different from Post-test5/22.

https://doi.org/10.1371/journal.pone.0209510.g001
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significantly greater at 40˚C, one-minute (p<0.05; Cohen’s d = 1.36) and five minutes

(p<0.05; Cohen’s d = 1.33) post-test compared to 22˚C (Fig 4). Lactate was decreased at 40˚C

one-minute (p<0.05; Cohen’s d = 1.39) and five minutes (p<0.05; Cohen’s d = 1.68) post-test

compared to 22˚C (Fig 5).

Discussion

This study aimed to control relevant variables so as to authenticate the effects of hot tempera-

ture on physiological stress responses to exhaustive exercise. Humidity, ambient temperature

and body temperature were strictly controlled. As the main conclusion, it was demonstrated

that hot temperature intensified stress responses to maximal exercise. However, no differences

in IgA concentrations were observed between the environmental conditions. It was revealed

that exercise duration was longer in the 22˚C compared to 40˚C protocol, we believe that it is

possible that duration is relevant to the magnitude of the physiological response. However, the

differences in physiological variables were evident despite reduced exercise time in the heat.

According to the current results, a significant increase of IgA in saliva post-test was

observed. Yet, there was no significant impact of hot temperature on IgA responses. As the lev-

els of IgA in saliva are reflective of the ability of immune system to protect [8], the results of

Fig 2. Salivary concentrations of cortisol pre-test and at one (Post-test1) and five minutes (Post-test5) after physical exhaustion at temperatures of 22 and 40˚C. †

p< 0.05 different from Pre-test/22; ‡ p< 0.05 different from Pre-test/40; � p< 0.05 different from Post-test1/22; �� p< 0.05 different from Post-test1/40; ��� p< 0.05

different from Post-test5/22.

https://doi.org/10.1371/journal.pone.0209510.g002
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this study suggested no decline in the immune capacity of saliva post-test performed at differ-

ent levels of thermal stress. Nevertheless, generalization of the complete immune system based

only on IgA should not be assumed.

IgA has been previously investigated in other studies that exposed increased levels of IgA

after performing progressive exercise to exhaustion at different intensities and in the same

thermal environment [8], and likewise after directing exercises at the same intensity to exhaus-

tion in a hot environment (30.3 ± 0.1˚C and 70% relative humidity) [4]. Until now, a decrease

was conveyed in the levels of IgA in saliva in a moderate environment after performing a tri-

athlon [30]. Taken together, the current findings suggest that hot temperatures do not intensify

IgA reduction in response to exhaustive exercise.

It is of interest that such inconsistencies may be attributable to deviations in hydration sta-

tus of athletes. Additionally, Blannin et al [8] reported that salivary IgA concentration and

ratio to osmolality simultaneously increased during exhaustive exercise on an electrically

braked cycle ergometer. As an important conclusion, the authors [4] indicated that exercise

impacts the quantity but not the quality of saliva. Also, in this study, the state of hydration of

the participants was suitably assessed before and after exercise by analyzing the urine specific

gravity, which was always less than 1.030 [31].

Equally, decreased IgA and salivary flow has been previously observed during prolonged

exercise in hot environments, and this was described as because of increased sympathetic

activity [32,33]. These deliberations predict the existence of an inverse connection between the

levels of cortisol and IgA, which was unnoticed in this study, since the elevation in the levels of

Fig 3. Salivary concentrations of nitric oxide pre-test and at one (Post-test1) and five minutes (Post-test5) after exhaustion at 22 and 40˚ C. † p< 0.05 different

from Pre-test/22; ‡ p< 0.05 vs. Pre-test/40; � p< 0.05 different from Post-test1/22; �� p< 0.05 different from Post-test 1/40; ��� p< 0.05 different from Post-test 5/22.

https://doi.org/10.1371/journal.pone.0209510.g003
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IgA was lagged by increased levels of cortisol. These results agree with Laing et al [4], who

found no inverse association between IgA and cortisol levels. But, the study by Laing et al [4]

should not represent an appropriate basis of comparison with the results described in the cur-

rent investigation, since the intensity of exercise in that study was smaller to that applied here.

In this study, the participants performed exercise under increasing loads until exhaustion,

while in the study of Laing et al [4] the exercise was accomplished under the same intensity for

a fixed two hours. Despite the discrepancies in relation to the work of Laing et al [4], a signifi-

cant increase in cortisol levels in the saliva in a hot environment coincides with other studies

[1,34].

Whilst hot temperatures did not significantly influence IgA responses, it intensified salivary

cortisol responses to exhaustive exercise, indicating increased stress responses. It should be

consistent with the greater systemic stress induced by heat, which can then lead to decreased

athletic performance [35]. The occurrence of a higher level of stress in a hot environment must

have been the factor responsible for the more intense elevation of salivary α-amylase in a hot

environment. This since α-amylase has been applied as a biomarker for the amount of stress

produced by exercise [6,36], as its increase in saliva during exercise results from increased

sympathetic activity of the β-adrenergic receptor [37,38].

Cortisol and α-amylase presented opposite responses compared with the anaerobic thresh-

old marker (blood lactate concentration), since lactate was lower after exhaustive exercise in a

hot environment, signifying increased muscle fatigue. This is in agreement with No et al [22],

Fig 4. Concentrations of total salivary proteins pre-test and at one (Post-test1) and five minutes (Post-test5) after exhaustion at 22 and 40˚ C. † p< 0.05 different

from Pre-test1/22; ‡ p< 0.05 different from Pre-test1/40; � p< 0.05 different from Post-test1/22; �� p< 0.05 different from Post-test1/40;��� p< 0.05 different from

Post-test5/22.

https://doi.org/10.1371/journal.pone.0209510.g004
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who evaluated male varsity soccer players submitted to bicycle exercise until exhaustion under

three different conditions (10 ± 1˚C, 22 ± 1˚C and 35 ± 1˚C). These researchers detected that

blood lactate was reduced during maximal exercise at cool (10 ± 1˚C) and hot (35 ± 1˚C) con-

ditions compared with warm environment (22 ± 1˚C).

The key increase in blood concentration of lactate in a normal temperature environment

(22˚C) and total salivary proteins in the hot environment coincides with the results of studies

performed in temperate [5,6] and hot environments [9]. As the total proteins increasing in

saliva is also a consequence of activation of the sympathetic nervous system [18,19], this stimu-

lation should have been more intense in the hot than the temperate environment [32].

Besides the stressful effect of hot environment in exhaustive exercise evidenced by higher

levels of cortisol, α-amylase and total proteins, NO response to exercise was also increased at

40˚C. Increased levels of NO with exercise concur with studies exhibiting an increase of NO

after the performance of different types of physical activity at room temperature [38]. The

increase of NO is related to blood vessel erosion, caused by the increase in systolic blood

Fig 5. Blood lactate concentrations pre-test and at one (Post-test1) and five minutes (Post-test5) after exhaustion at 22 and 40˚ C. † p< 0.05 different from Pre-

test/22; ‡ p< 0.05 different from Pre-test/40; � p< 0.05 different from Post-test1/22; �� p< 0.05 different from Post-test1/40; ��� p< 0.05 different from Post-test5/22.

https://doi.org/10.1371/journal.pone.0209510.g005

Table 2. Mean values followed by their respective standard deviations of heart rate (bpm) pre-test and post-test in

22˚C and 40˚C protocols.

Protocol Pre-test Post-test

22˚C 69.778 ± 10.58� 184.78 ± 8.438�

40˚C 80.333 ± 12.104 192.44 ± 8.079

�p<0.001 vs. post-test 40˚C.

https://doi.org/10.1371/journal.pone.0209510.t002
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pressure [39], and, by an increase in activity of NO synthase (NOS) in proportion to exercise

intensity and the enlarged vasodilatation because of the need for heat exchange with the sur-

roundings [39]. The highest elevation in the levels of NO in a hot environment suggest a higher

activity of NOS in this situation.

This current study suggests some points worth highlighting. Effect size calculation dis-

played the magnitude of the difference between protocols and moments, strengthening statisti-

cal significance of the current results. Body fat percentage and VO2max were logged to

standardize the study population. Higher exercise duration at 22˚C removes the influence of

time to exhaustion in the hot environment protocol.

A limitation of this study is the absence of data collection in a real environment. A real envi-

ronment would influence some of these variables. As it was conducted under laboratory set-

tings, this investigation rejected these potential external influences. This study did not measure

autonomic function, which would provide additional information regarding physiological

stress. Future studies are suggested to perform this specific kind of analysis. We did not mea-

sure hydration levels after exercise because the volunteers were unable to micturate.

Another limitation of this study is that the duration of exposure that was extended in the

22˚C group compared to 40˚C protocol; the period to exhaustion during maximal exercise was

reduced in the hot environment. This needs highlighting because in reality triathletes, mara-

thoners, and most endurance sportspersons exceed a period of 60 minutes when exercising.

The results of this investigation draw attention to subjects submitted to exhaustive exercise

in hot environments. Considering that it increased the physiological stress, the sports medicine

clinical team should be vigilant in hot temperature situations throughout competitions.

Conclusion

Hot temperature intensified responses of cortisol, α-amylase, NO and total protein induced by

exhaustive exercise, signifying more intense stressful responses elicited by the heat. Yet, there

was no significant influence on IgA. These findings suggest that hot temperatures reduce exer-

cise performance and increase the probability of disorders caused by maximal effort. It is

therefore necessary to highlight the significance of this information to clinical sport coaches

responsible for athletes during competition in hot environments.
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S1 File. HR and exercise time.

(XLSX)

Table 3. Cohen’s d regarding blood variables.

Variable 22˚C—Pre-test vs.

Post-test 1 min

22˚C—Pre-test vs.

Post-test 5 min

40˚C—Pre-test vs.

Post-test 1 min

40˚C—Pre-test vs.

Post-test 5 min

IgA 2.78� 0.18� 1.65� 0.8�

α-amylase 3.39� 2.09� 7.35� 6.99�

Cortisol 1.29� 2.25� 3.21� 4.26�

NO 2.27� 2.968 0.32� 0.41�

Total

proteins

6.51� 8.63� 6.09� 7.7�

Lactate 8.15� 6.28� 8.21� 6.18�

NO: Nitric oxide; IgA: immunoglobulin A.

�p<0.05.

https://doi.org/10.1371/journal.pone.0209510.t003
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