UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO (PPgCC)

DIVULGAÇÃO DO GABARITO DA PROVA DE CONHECIMENTO ESPECÍFICOS DO CURSO DE MESTRADO EM CIÊNCIA DA COMPUTAÇÃO DO PPGCC DA UNIVERSIDADE FEDERAL DO ACRE, CAMPUS SEDE

EDITAL PROPEG No. 02/2019

A Comissão de Seleção do Programa de Pós-Graduação em Ciência da Computação da Universidade Federal do Acre torna público o gabarito das questões objetivas e a chave de correção das questões discursivas da Prova de Conhecimentos Específicos.

QUESTÕES OBJETIVAS			
1	ANULADA	9	E
2	В	10	D
3	ANULADA	11	E
4	A	12	С
5	С	13	A
6	С	14	D
7	ANULADA	15	В
8	E	16	ANULADA

CHAVE DE CORREÇÃO DAS QUESTÃO DISCURSIVA – FUNDAMENTOS DA COMPUTAÇÃO

ANULADA

CHAVE DE CORREÇÃO DAS QUESTÕES DISCURSIVAS - ESTRUTURAS DE DADOS

Código fonte

```
fibonacci.cpp
        Chave de correção prova de mestrado 2019
 * Versões iterativa e recursiva do algoritmo de fibonacci.
//Linguagem C++
#include <iostream>
using namespace std;
unsigned long long iterativo(long n)
        unsigned long long fib = 0, ant = 0, prox = 1;
        if(n == 1 || n == 2)
                return 1;
        for (int i = 1; i < n; i++)
        {
                fib = ant + prox;
                ant = prox;
                prox = fib;
        return fib;
unsigned long long recursivo(long n)
        if(n < 2)
                return n;
        return recursivo(n - 1) + recursivo(n - 2);
int main()
        long n = 0;
        cin >> n;
        cout << iterativo(n) << endl;</pre>
        cout << recursivo(n) << endl;</pre>
        return 0;
}
```

Iterativa

Um algoritmo escrito da forma iterativa pode ser implementado diretamente pela definição da série e construído usando opções existentes para comandos relacionados às estruturas de repetição.

a)Vantagens

- A complexidade computacional do algoritmo é linear, ou seja, O(n).
- Melhor desempenho se comparado com a versão recursiva.

b) Desvantagens

- Menor legibilidade do código fonte, exige mais atenção na implementação.
- Variáveis devem ser inicializadas para representar os primeiros termos da sequência.

Recursiva

A definição da sequência de Fibonacci fornecida pelo enunciado pode ser tomada como base para implementar um algoritmo recursivo e pode ser construído usando uma função com uma condição de parada e duas chamadas recursivas.

a) Vantagens

- Melhor legibilidade do código fonte.
- Maior clareza do algoritmo para problemas de definição naturalmente recursiva

b) Desvantagens

- Baixo desempenho na execução devido ao tempo para gerenciamento das chamadas, pois recalcula repetidas vezes o mesmo valor.
- A complexidade computacional do algoritmo é exponencial, ou seja, O (φn) , $\varphi = (1 + \operatorname{sqrt}(5))/2.0$.

Observações:

- Quando qualquer chamada de função é feita dentro de um programa é criado um registro de ativação na pilha de execução do programa.
- O tempo de execução é maior, devido ao overhead introduzido pelo gerenciamento das chamadas recursivas na pilha de execução.
- A complexidade pode ser explicada em forma de gráfico (linear versus exponencial).

Comissão de Seleção do PPgCC – Campus Sede Rio Branco, 11 de Março de 2019