

MACRONUTRIENTE-K

DOCENTE: Dr. Ríbamar Sílva

I. Introdução

- K⁺ → Macronutriente absorvido em grande quantidade pelas plantas;
- . Absorção K ≅ N < P;
- . K no tecido foliar em geral \rightarrow 0,5 5 %;
- . Solos derivados de Granito apresentam elevados teores de K-total devido a presença do mineral mica.

II. Intemperização dos Minerais Potássicos

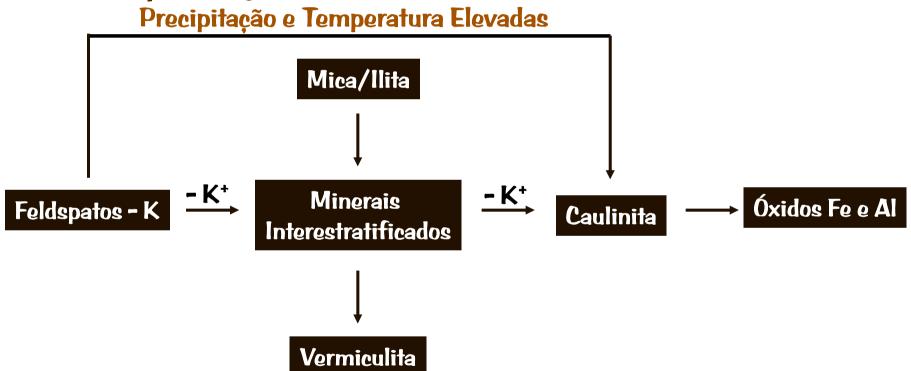


Figura 1. Sequência de intemperização de Feldspatos-K.

MACRONUITRIENTE

"Potássio"

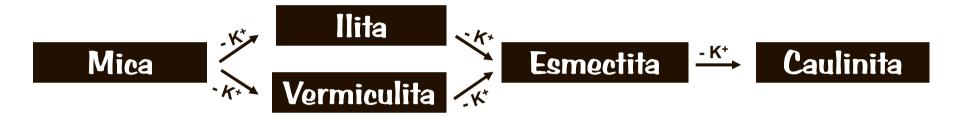


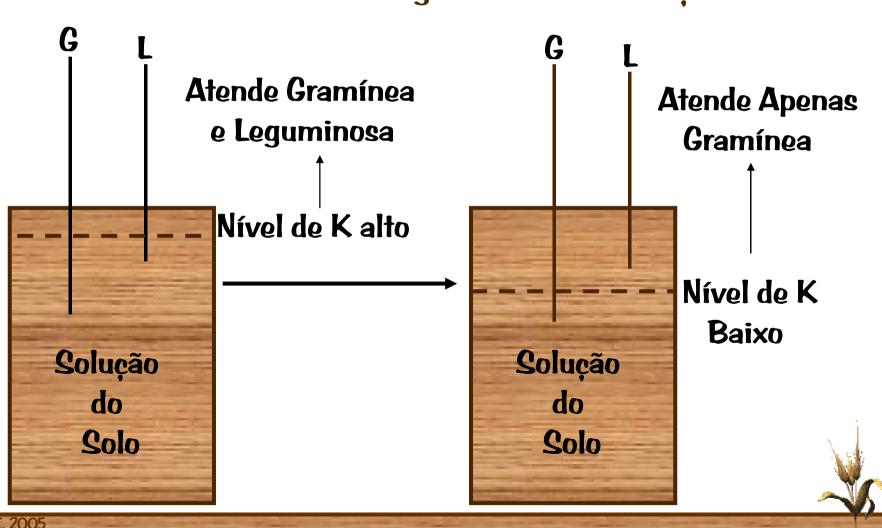
Figura 2 - Principais transformações das micas no solo.

 Solos Brasileiros → Baixos teores de Minerais primários e de estrutura 2:1 → Baixos teores de K-total.

III. Formas de K no solo

- K-Solução:
- . Corresponde ao fator intensidade de potássio;
- . Forma pela qual a planta absorve o K⁺ → Importância na nutrição vegetal;
- . Mantido principalmente pelo K-trocável (equilíbrio rápido);
- . [K] solução depende da entrada e saída de Potássio;
- . Teor varia com a cobertura do terreno:

Ciclagem de Raízes


- . Menores [K] solução → Solos arenosos e de regiões úmidas;
- . Quando solo é inundado → [K⁺] solução aumenta → Com a redução os cátions NH₄⁺, Fe²⁺ e Mn²⁺ são adsorvidos aos colóides deslocando o K⁺ para a solução, efeito maior em solos argilosos.
- [K] solução → Controla a permanência de uma gramínea ou de uma leguminosa em consórcios no solo.
 - .. Gramíneas → Baixa CTC de raiz → Se desenvolvem com um teor mais baixo de K na solução (Sistema radicular capaz de absorver K⁺ mesmo de formas não trocáveis). Elas têm baixa resposta à adubação potássica.

.. Se aumentar a [K] para leguminosa esta não é afetada pela gramínea, mas se [K] ficar abaixo do ótimo para leguminosa a gramínea vai competir com esta e com o passar do tempo → Leguminosa eliminada do pasto → Figura X.

Consóecio Gramínea x Leguminosa x K-solução

2 K-Trocável:

- . K retido nos colóides do solo por ligação eletrostática. Corresponde ao Fator quantidade "Q " de K;
- . Teor de K-trocável é regulado pelo cátion complementar (Ca que é o mais abundante no solo);
- . Maiores teores de $K^+ \to Solos$ argilosos (> CTC), em regiões áridas e semi-áridas, em solos minerais originados de granito e na presença de muscovita e/ou biotita (micas).

8 K-Não Trocável (K-estrutural + K-fixado):

- . K- estrutural → K integrante da rede cristalina dos minerais;
- K liberado pelos minerais quando o nível de potássio trocável do solo é reduzido intensamente (absorção pelas plantas, lixiviação);
- . Representa a capacidade de suprimento de K a médio e longo prazo para as plantas;
- . Após atingir um nível mínimo de potássio, os solos podem recuperar o K trocável pela liberação de K das formas não trocáveis. O nível dessa reposição depende do solo e tempo de pousio.

- 8 K-Não Trocável (K-estrutural + K-fixado):
 - . K-fixado → K fortemente retido entre as unidades cristalográficas de minerais 2:1. A fixação do K se dá com a posterior contração das lâminas pela desidratação, as quais perdem a expansibilidade (Vermiculita)
 - . Minerais com possibilidade de fixar potássio: Montmorilonita < Mica Hidratada (Ilita) < Vermiculita</p>
 - Fixação de K em solos brasileiros → Pouca importância
 Mineralogia Dominante é Caulinita e/ou Óxidos.

FATORES QUE AFETAM A FIXAÇÃO E A LIBERAÇÃO DE K NO SOLO:

A - Natureza e quantidade de minerais de argila:

- . > fixação → Teor de minerais 2:1 (vermiculita);
- . [K] solução → Quanto mais K na solução (adubação). maior será a possibilidade de fixação (solos com minerais 2:1).

B - pH → Menor pH leva a uma menor fixação de K, devido:

- . Competição entre K e H;
- . Destruição da grade cristalina sob valores muito baixos de pH;
- Deposições de polímeros de ferro e/ou alumínio no interior das unidades cristalográficas impedindo a fixação → Minerais VHE (Vermiculita com Hidroxi nas entrecamadas).

C - Natureza dos Cátions Trocáveis:

. Argilas saturadas com H^+ e NH_4^+ fixam menos K^+ que saturadas com outros cátions, devido a competição entre os cátions K^+ e NH_4^+ sobre os pontos de fixação na argila.

4 K-Matéria Orgânica:

- . O K não se liga a nenhum composto orgânico estrutural de planta. Contribuição não significativa para o total de K no solo. Devido a este fato o K é facilmente perdido pelas folhas e raízes. Água da chuva → Arrasta grande quantidade de K⁺ da parte aérea para o solo, principalmente nos estágios finais do ciclo da planta.
- . No húmus (Cargas negativas) → retém o K⁺- trocável.

6 K-Total:

- . Solos mais argilosos > arenosos.
- . Solos regiões secas > úmidas.
- . Solos minerais > orgânicos.
- . Solos rochas (gneas (Granito) > Arenito, Calcário.

IV. Dinâmica do K no Sistema Solo-Planta e Disponibilidade para as Plantas

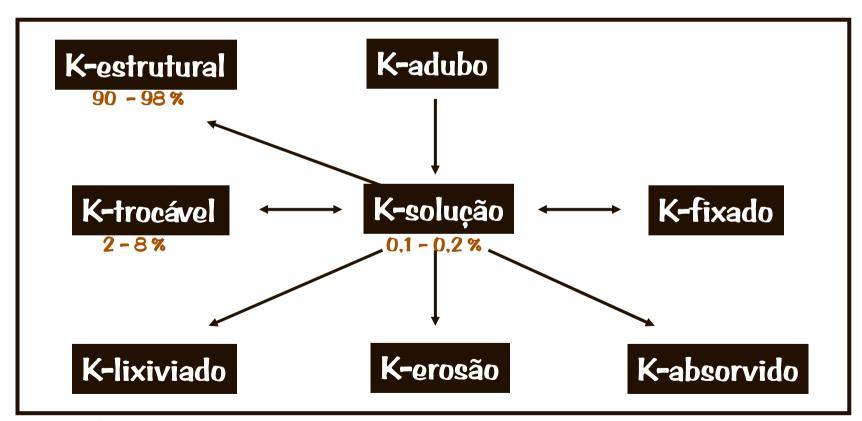


Figura 3 - Dinâmica do K no sistema solo-planta.

- . Fator Intensidade de K → K solução;
- . Fator Quantidade de K → K trocável (lábil);
- . Fator Capacidade de K → Poder do solo de resistir às mudanças do K-solução quando este é alterado por lixiviação, absorção pelas plantas ou fertilização potássica;
- . Termo K-disponível = (K-solução + K-trocável) → Representa a disponibilidade imediata de potássio para as plantas.

A - Mineralogia Dominante:

- . Minerais podem ser:
 - .. Fontes de K → Feldspatos potássicos e Micas;
 - .. Fixadores de $K \rightarrow Vermiculita (2:1)$;
 - .. Solos Regiões Temperadas → Minerais 2:1 e até mesmo Minerais primários → Maior reserva de potássio em relação a solos tropicais cauliníticos ou oxídicos que em geral têm baixos teores de K total.

- . Intemperização de minerais potássicos:
 - .. Intemperismo é função (Intensidade, tempo de exposição, agentes de intemperismo).
- . Reações: Hidrólise e protonação de ortoclásio → Libera K⁺

$$3 \text{ KAl} \text{Gi}_3 \text{O}_8 + 12 \text{ H}_2 \text{O} + 2 \text{ H}^+ \longrightarrow \text{KAl} \text{Gi}_3 \text{O}_6. \text{ Al}_2 \text{O}_4 + 2 \text{K}^+ + 6 \text{ H}_4 \text{Gi}_4$$

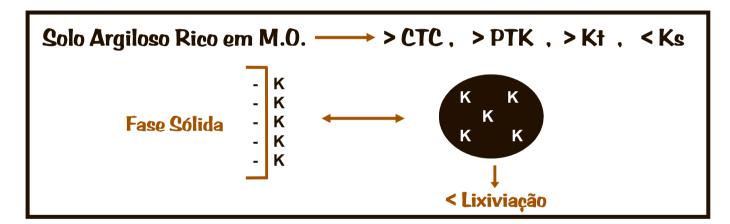
Ortoclásio Caulinita

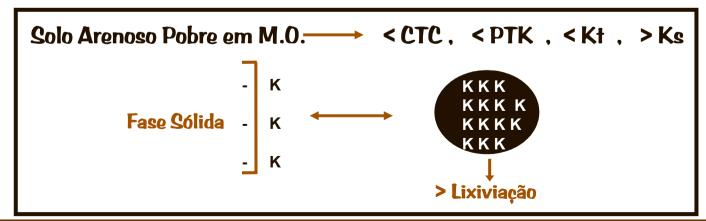
 Hidrólise e ação de ácidos orgânicos → Forte protonação → Liberação de K⁺ + Minerais 1:1 → Óxidos de Fe e Al.

B - Argila e Matéria Orgânica:

- . Contribuem para a CTC do solo.
- . Quanto > Argila e M.O. → > CTC → > Retenção de K nos sítios de troca e > PTK.

EFEITO INDIRETO DA M. ORGÂNICA:

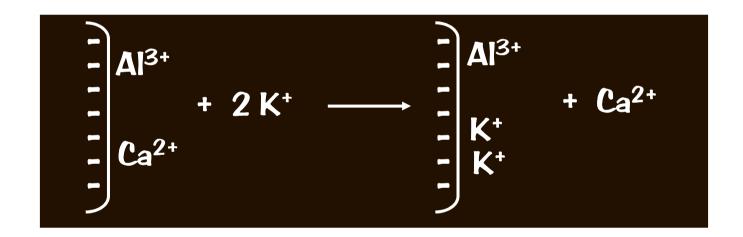

- . Quanto > M.O. → Melhor agregação do solo (estrutura) →
 - > aeração do solo → > Capacidade de Retenção de água →
 - > Desenvolvimento radicular → > Difusão de K.


MACRONUTURIENTE

"Potássio"

C - CTC:

. Quanto > CTC \rightarrow > PTK \rightarrow > Kt \rightarrow < Ks



D - pH:

- . Afeta indiretamente a fixação de K em solos muito ácidos
 - .. Polimeros de hidroxi-alumínio [Al(OH) $_2^+$] podem ocupar os sítios nas entrecamadas de minerais 2:1 (VHE), reduzindo a fixação de K $^+$.
- . Diretamente \to ↑ pH pela calagem \to Cria cargas negativas nos colóides \to > CTC \to > PTK \to > Kt \to < Ks .
- . Com a Calagem diminui as perdas por lixiviação de K:
 - .. Ampliação das cargas negativas (maior CTC);
 - .. Competição K/Ca é menor do que K/Al pelos sítios de Troca no solo.

MACRONUTRIENTE

"Potássio"

PODER TAMPÃO DE POTÁSSIO X CALAGEM

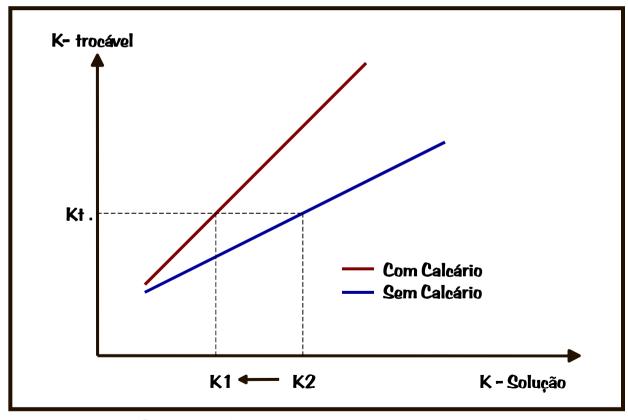


Figura 4 - Efeito da Calagem no PTK.

- Para um mesmo valor de K trocável → 0 K-solução diminuiu de K2 para K1 → Kt aumenta e o PTK também aumenta ligeiramente, dependendo da textura do solo.
- OBS: Em solos arenosos com pouca M.O. a calagem pode através de Ca e Mg deslocar o K da troca para a solução deixando-o mais sujeito à lixiviação.

Gessagem:

. O uso do CaSO₄ (Gesso Agrícola) \rightarrow Liberação do ânion (SO₄²⁻) que atua como íon acompanhante do K⁺ para a subsuperfície.

E - Quantidade de outros Cátions (Ca e Mg):

Interação K x Mg

. ↑ K → ↓ Mg (Competição por sítios, absorção K > Mg).

- . Interação K x Ca:
 - .. Deficiência de Ca → ↓ absorção de K;
 - .. Ca tem papel importante na estabilidade da membrana celular favorecendo a absorção de N, P e K;
 - .. [Ca] e [Mg] muito elevadas → Maior competição pelos sítios de troca → deslocamento de K para a solução do solo → Maior risco de perdas por lixiviação.

F - Aeração:

. Favorece o crescimento de raízes → > difusão de K (+ 80 %).

G - Umidade:

. Água favorece os mecanismos de difusão e fluxo de massa importantes para o transporte de K até as raízes das plantas.

V. Forma de Potássio Absorvida pela Planta

. Íon K⁺

VI. Condições que Favorecem a Ocorrência de Deficiência de Potássio nas Plantas

- . Solos com baixo teores de potássio (arenosos e mais intemperizados);
- . Solos mal drenados (H_2 S e Fe inibem a absorção de K).

- . Solos hidromórficos (orgânicos e gleizados);
- . Solos originados de arenito e rochas calcárias;
- Solos após a utilização de culturas mais produtivas e exigentes em K⁺.

VII. Métodos de Avaliação de K no Solo

- K prontamente disponível:
 - . Mehlich-1 (Carolina do Norte) $HCI 0.050 \text{ mol/L} + H_2CO_4 0.0125 \text{ mol/L}$
- . Acetato de Amônio 1mol/L a pH 7.0

A - K-não trocável:

- . Poder de Suprimento de Potássio
 - .. HNO₃ 1mol/L fervente
 - .. H_2SO_4 concentrado
 - .. Cultivos sucessivos

B - K-total:

$$. HF + HCIO_4$$

VIII. Principais Adubos Potássicos

- . Cloreto de Potássio KCl (60% K_2 0)
- . Sulfato de Potássio K_2SO_4 (54% K_2O)
- . Nitrato de Potássio KNO_3 (46,5 % K_2O)
- . Sulfato Duplo de Potássio e Magnésio K_2SO_4 . 2 $MgSO_4$ (23 % K_2O)

IX. Eficiência da Adubação Potássica

Pode ser aumentada:

- . Evitando-se a perda de K por lavagem ou lixiviação;
- . Colocando o nutriente ao alcance das raízes;
- . Evitando os danos do efeito salino.

X. Efeitos Salinos de Adubos Potássicos

Indice Salino:

- . É o valor relativo da pressão osmótica da solução do adubo, tomando como referência a pressão osmótica do Nitrato de Sódio (NaNO $_3$), tomado como valor referencial de 100.
- . Quanto mais próximo de 100 for o índice salino → Evitar contato direto semente/adubo ou fazer aplicações parceladas no caso de adubações pesadas.

X. Efeitos Salinos de Adubos Potássicos

Adubos	Índice Salino
Nitrato de Sódio	100
Nitrato de Amônio	105
Nitrato de Potássio	74
Uréia	75
Sulfato de Amônio	69
Superfosfato Simples	8
Superfosfato triplo	10
Cloreto de Potássio	114
Sulfato de Potássio	46

Cálculo do Índice Salino de um Adubo ou Mistura:

. Exemplo 1: Aplicar 300 Kg/ha de KCl o índice salino da aplicação será:

.. [(Quant. Aplic. - Kg /ha) / 1000] x Índice Salino (Tabela)

. Assim teremos:

 $(300/1000) \times 114 = 34.2 (Baixo)$

- . Exemplo 2. Aplicar 300 Kg/ha Sulfato de Amônio + 200 Kg/ha Superfosfato Simples + 500Kg/ha de Cloreto Potássio.
 - .. Dados: Índice Salino $(NH_4)_2SO_4 69$ SFS 8 KCI 114

.. Assim Teremos:

$$0.300 \times 69 + 0.200 \times 8 + 0.500 \times 114 = 79.3$$
 (alto)

.. Neste caso, requer cuidados quanto ao modo de aplicação da mistura, principalmente na produção de mudas devido ao pequeno volume de solo utilizado.

. OBS: Por causa do elevado índice de solubilidade, o KCl deve ser aplicado um pouco afastado da semente, cerca de 15 dias antes do plantio e se forem usadas grandes quantidades do adubo, ela deverá ser parcelada e aplicada nestes casos em cobertura.

VI. Considerações Finais

- A dinâmica do K⁺ no solo é dependente de inúmeros fatores como tipo e teor de argila, matéria orgânica e pH do solo.
- Solos da Amazônia (Acre) que ainda têm minerais 2:1 podem ser drenos de potássio, o que não ocorre em solos do Cerrado.
- Cuidados especiais: Adubações pesadas de K em solos com baixo PTK → Elevadas perdas por lixiviação. E com o efeito salino.
- De modo geral solos tropicais → Não são mais considerados fontes.

Obrigado Pela Atenção... Ríbamar Sílva